Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083494

RESUMO

Circadian clocks are evolved to adapt to the daily environmental changes under different conditions. The ability to maintain circadian clock functions in response to various stresses and perturbations is important for organismal fitness. Here, we show that the nutrient-sensing GCN2 signaling pathway is required for robust circadian clock function under amino acid starvation in Neurospora. The deletion of GCN2 pathway components disrupts rhythmic transcription of clock gene frq by suppressing WC complex binding at the frq promoter due to its reduced histone H3 acetylation levels. Under amino acid starvation, the activation of GCN2 kinase and its downstream transcription factor CPC-1 establish a proper chromatin state at the frq promoter by recruiting the histone acetyltransferase GCN-5. The arrhythmic phenotype of the GCN2 kinase mutants under amino acid starvation can be rescued by inhibiting histone deacetylation. Finally, genome-wide transcriptional analysis indicates that the GCN2 signaling pathway maintains robust rhythmic expression of metabolic genes under amino acid starvation. Together, these results uncover an essential role of the GCN2 signaling pathway in maintaining the robust circadian clock function in response to amino acid starvation, and demonstrate the importance of histone acetylation at the frq locus in rhythmic gene expression.


Assuntos
Relógios Circadianos , Neurospora crassa , Acetilação , Aminoácidos/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Histonas/metabolismo , Neurospora crassa/genética , Nutrientes , Transdução de Sinais
2.
mBio ; 12(3): e0142521, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34182774

RESUMO

Temperature compensation is a fundamental property of all circadian clocks; temperature compensation results in a relatively constant period length at different physiological temperatures, but its mechanism is unclear. Formation of a stable complex between clock proteins and casein kinase 1 (CK1) is a conserved feature in eukaryotic circadian mechanisms. Here, we show that the FRQ-CK1 interaction and CK1-mediated FRQ phosphorylation, not FRQ stability, are main mechanisms responsible for the circadian temperature compensation phenotypes in Neurospora. Inhibition of CK1 kinase activity impaired the temperature compensation profile. Importantly, both the loss of temperature compensation and temperature overcompensation phenotypes of the wild-type and different clock mutant strains can be explained by temperature-dependent alterations of the FRQ-CK1 interaction. Furthermore, mutations that were designed to specifically affect the FRQ-CK1 interaction resulted in impaired temperature compensation of the clock. Together, these results reveal the temperature-compensated FRQ-CK1 interaction, which results in temperature-compensated CK1-mediated FRQ and WC phosphorylation, as a main biochemical process that underlies the mechanism of circadian temperature compensation in Neurospora. IMPORTANCE Temperature compensation allows clocks to adapt to all seasons by having a relatively constant period length at different physiological temperatures, but the mechanism of temperature compensation is unclear. Stability of clock proteins was previously proposed to be a major factor that regulated temperature compensation. In this study, we showed that the interaction between CK1 and FRQ, but not FRQ stability, explains the circadian temperature compensation phenotypes in Neurospora. This study uncovered the key biochemical mechanism responsible for temperature compensation of the circadian clock and further established the mechanism for period length determination in Neurospora. Because the regulation of circadian clock proteins by CK1 and the formation of a stable clock complex with CK1 are highly conserved in eukaryotic clocks, a similar mechanism may also exist in animal clocks.


Assuntos
Caseína Quinase I/metabolismo , Relógios Circadianos/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Neurospora crassa/genética , Temperatura , Caseína Quinase I/genética , Relógios Circadianos/fisiologia , Mutação , Neurospora crassa/fisiologia , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...